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We propose a model for a one-dimensional chain of interacting particles in an external periodic potential. In
this model the particles have a complex structure treated in a mean-field fashion: particle collisions are inelastic
and also each particle is considered as having its own thermostat. We derived the Fokker-Planck equation for
this model and demonstrated that the model has a truly equilibrium ground state. When an external dc force is
applied to the atoms, the model exhibits a hysteresis even at high temperatures due to the clustering of atoms
with the same velocity. Another effect of clustering is phase separation in the steady state when the system
splits into regions of immobile atomss“traffic jams”d and regions of running atoms.
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We consider the problem of modeling a system consisting
of complex particles which have their own structure with
internal degrees of freedom. The internal modes may be ex-
cited due to interparticle collisions that take away the kinetic
energy of the translational motion so that the collisions are
inelastic. This is a typical situation in soft-matter physics, for
example, in physics of granular gasesf1,2g. A direct simula-
tion of such a system that takes into account a detailed inter-
nal structure of particles is too time consuming, hence alter-
native simplified models are of interest.

Recently Cecconiet al. f3g have studied a model of such
type. In their model there are two “atoms” in the double-well
external potential and the atomic collisions are inelasticsthe
authors considered the simplest case of hard-core collisionsd.
The model exhibits an interesting effect of atom “clustering,”
when both atoms prefer to stay in the same well of the sub-
strate potential and, moreover, at low temperatures both at-
oms hop simultaneously over the barrier that separates the
wells. The model of Cecconiet al. f3g, however, violates the
energy conservation principle: the energy that is lost in col-
lisions disappears forever. As a result, a stationary state of
such a model does not correspond to a thermally equilibrium
state; the energy losses due to collisions lead to an effective
cooling of the system. In the context of granular matter phys-
ics, where grains are typically macroscopic particles, the vio-
lation of energy conservation is irrelevant, because energy
losses are negligible with respect to other energies involved
in the problemf1–5g. But for mesoscopic or microscopic
particlesse.g., macromoleculesd the energy losses in inelastic
collisions may be essential.

In a more realistic physical model the kinetic energy of
atomic translational motion that is lost in a collision is stored
as the energy of excitation of internal degrees of freedom and
may be released later as the kinetic energy. In a simple case,

when the number of internal degrees of freedom is “large”
and their coupling is nonlinear, the energy lost in collisions is
transformed into the “heating” of particles. In the present
work we propose a different type of stochastic models, a
model with “multiple” thermostats, where, in addition to the
standard “substrate” thermostat, each particle is considered
as having its own “thermostat.” A natural description of such
a model is one with a specific type of Langevin equationssor
the corresponding Fokker-Planck equationd. Although the
atomic interactions are inelastic, the model does have a truly
thermally equilibrium state with a Maxwell-Boltzmann dis-
tribution so long as there are no external forces.

As a typical example, we consider an infinite one-
dimensionals1Dd system of “atoms” with nearest-neighbors
sNNd inelastic interaction, subjected to a sinusoidal substrate
potential. It is a generalization of the well-known Frenkel-
Kontorova sFKd model se.g., see Ref.f6g and references
thereind. We consider a chain ofN atoms distributed overM
minima of the sinusoidal substrate potentialVsubsxd= 1

2«sf1
−coss2px/asdg with periodic boundary conditions. The equa-
tion of motion for thelth particle has the form

mẍl + mhẋl + Vsub8 sxld = − f l+1,l + f l,l−1 + dFlstd + f , s1d

where the dotsprimed indicates the timesspatiald derivative.
To each atom we apply an external dc forcef and a viscous
damping force. The coefficienth describes the energy ex-
change with the substrate. The substrate thermostat is mod-
eled by the Gaussian stochastic forcedFlstd which has zero
average and the standard correlation function

kdFlstddFl8st8dl = 2hmkBTdll8dst − t8d, s2d

whereT is the temperature andkB is Boltzmann’s constant.
Throughout the paper we use dimensionless units withm
=1, as=2p, and«s=2. Also we setkB=1 so thatT is mea-
sured in energy units.*Electronic address: obraun@iop.kiev.ua

PHYSICAL REVIEW E 71, 032103s2005d

1539-3755/2005/71s3d/032103s4d/$23.00 ©2005 The American Physical Society032103-1



The interaction takes an exponential form,Vintsxd
=V0exps−gxd. The amplitudeV0 is related to the effective
elastic constant g, g=sas

2/2p2«sdV9saAd=V0g2exps−gaAd,
and aA=asM /N is the average distance between the atoms.
The exponential potential reduces to the harmonic one in the
limit g→0 and to the hard-core potential in the limitg
→`.

The inelasticity of collisions is modeled by a viscous
damping force proportional to the relative velocity of two
atoms. The mutual interaction between thelth and sl −1dth
atoms is described by the forcef l,l−1:

f l,l−1 = − Vint8 sxl − xl−1d − mrhlsẋl − ẋl−1d + df lstd. s3d

The first term on the right-hand side of Eq.s3d describes the
elastic interaction, the second term describes the inelasticity
due to viscous damping,mr =m/2 is the reduced mass of two
colliding atoms, and the last term is the stochastic force that
compensates the energy loss due to inelasticity,

kdf lstddf l8st8dl = 2hlmrkBTdll8dst − t8d. s4d

The mutual dampinghl was chosen to depend on the dis-
tance between the NN atoms in the same way as the poten-
tial, hl =h*expf−gsxl −xl−1−aAdg, where h* is a parameter
which describes the inelasticity: the interaction is elastic in
the case ofh* =0 while in the limith* →` the collisions are
completely damped.

The set of Langevin equationss1d–s4d is equivalent to the
Fokker-Planck-Kramers equation for the distribution func-
tion Wshxlj ,hẋlj ; td,
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] ẋl
D

− hl+1Sẋl+1 + T
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It is easy to check that in the undriven case,f =0, the
Maxwell-Boltzmann distribution is a solution of Eq.s5d.
Thus our model has the truly thermodynamically equilibrium
state.

In the driven case,f Þ0, the thermal equilibrium state is
destroyed and the system exhibits a transition from a locked
state at low drivingswith exponentially low mobility at low
temperaturesd to the slidingsrunningd stationary state at high
driving, where all atoms move with almost the same velocity
f /mh. For the classical FK model, when the interactions are
elastic, the locked-to-sliding transition was studied in a series
of papersf7–9g. At zero temperature,T=0, the average ve-
locity of the atoms as a function off exhibits hysteresis, but
at any T.0 the hysteresis disappears for an adiabatically
slow change of the driving in the 1D model. However, in
actual simulation when the forcef changes at a finite rate, a

small hysteresis persists due to the delay in forming the
steady state. Besides, in the case of exponential interactions,
the steady state during the locked-to-sliding transition for
some range of model parameters may correspond to a spe-
cific “traffic-jam” sTJd state with an inhomogeneous spacial
distribution of atomsf7,8g.

In the present work we show that both of these properties
of the transition change drastically for an inelastic interac-
tion. First, the system exhibits hysteresis even at very high
temperatures. Second, the TJ regime is observed for a much
wider range of model parameters, thus it is a generic prop-
erty of the system. Both effects appear because of a cluster-
ing of atoms as was predicted by Cecconiet al. f3g. Indeed,
in the case of inelastic interaction, the energy losses are
minimal when the NN atoms move with the same velocity
and the mutual viscous forces are zero.

In simulations, we chooseN/M =144/233, which is close
to the “golden-mean” atomic concentration. The force was
typically changed at the rateR;Df /Dt=0.0025/s231000
32pd<2310−7, which is low enough to be considered as
adiabatically slow. Typically we used the following param-
eters:h=0.01,g=1/p, so that the dimensionless anharmo-
nicity parameter isgas=2, g=1 srecall that in the classical
FK model the Aubry locked-to-sliding transitionf10,11g
takes place with the increase ofg at g<1d, andT=1 which is
quite large as compared with the barrier height«s=2.

The simulation results for the normalized mobilityB
=kvl /v f are presented in Fig. 1. Herekvl=ol=1

N kẋllt /N,k¯lt

stands for averaging over time andv f ; f /mh is the maxi-

FIG. 1. sColor onlined Dependence of the normalized mobilityB
on the forcef for three values of the intrinsic damping:h* =0 sblue
up triangles, the elastic modeld, h* =e−aA<0.0393 sred down tri-
anglesd, andh* =10e−aA<0.393sblack diamondsd for an increasing
force ssolid curves and symbolsd and a decreasing forcesdotted
curves and open symbolsd. Other parameters are the following:g
=1/p , g=1, h=0.01, andT=1. Inset: Bsfd for h* <0.0393 for
three values of the rate of force changing:R<10−6 sblue up tri-
anglesd, R<2310−7 sred down trianglesd, andR<4310−8 sblack
diamondsd.
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mum atomic velocity. One can see that while there is no
hysteresis in theBsfd dependence in the “elastic” modelsa
narrow hysteresis of the widthDf =0.0025 exists due to the
finite step of force changingd, hysteresis does exist forh*

.0 and its width strongly increases withh* . Moreover, the
width of the hysteresis does not change essentially if the rate
of force variation changes in 25 times as shown in the inset
in Fig. 1. We emphasize that the hysteresis in Fig. 1 is for a
quite large temperatureT=1. Although the hysteretic width
decreases whenT grows, it still survives even atT=2 swhen
«s/kBT=1!d and disappears at huge temperatures only. For
example, in theh* <0.0393 case the dependenceDFsTd
= f forwardsTd− fbackwardsTd may be fitted by the exponential de-

pendenceDFsTd=DF0e
−T/T*

with DF0<0.156 andT* <0.76.
Therefore the hysteresis disappears whenDFsTd&Df which
givesTm*3.15.

Another important parameter of the model under consid-
eration is the rate of energy exchange with the substrate.
When the dampingh increases, the width of the hysteretic
loop decreases and the system behavior approaches that of
the elastic model. For example, forh* <0.0393 andT=1 the
hysteresis disappears ath*h* . When the other two param-
eters of the model, i.e., the strength of interactiong and the
radius of interactiong are varied, the system behavior re-
mains qualitatively the same as described above.

Qualitatively the existence of hysteresis may be explained
in the same way as in Ref.f8g. The system cannot be trans-
formed from the locked state to the running state and vice
versa as a whole. First a small cluster of atomssa critical
“nucleus”d should undergo the transition, and then it will
expand over the whole system. In the “soft” model consid-
ered here, where a fluctuation of the relative velocity of the
NN atoms is suppressed, the probability of the emergence of
a nucleus with a maximum velocity in the background of
immobile atomssas well as the nucleus of locked atoms in
the sea of running onesd is much lower than that in the elastic
model.

The hysteretic behavior described above clearly indicates
the clustering of atoms in the soft FK model. One more
indication of this effect is the plateau atB,0.5 in theBsfd
dependence of Fig. 1 which corresponds to the traffic-jam
regime. The TJ state appears in the interval of forces 0.09
ø f ø0.0975 in the force-increasing process and survives un-
til f ù0.0725 if the force decreases starting from the TJ state.
The atomic trajectories in the TJ state are shown in Fig. 2.
An inhomogeneous metastable state in the driven classical
FK model was found by Strunz and Elmerf12g. In Refs.
f7,8g we have shown that in the anharmonic FK model the
inhomogeneous state may correspond to the TJ state when
the chain splits into regions of totally immobile atomsstraffic
jamsd separated by regions of running atoms. The same TJ
state appears in the present model and, moreover, now it is
observed for a much wider range of model parameters and
high temperatures.

To study the TJ state, we calculated the coordinate and
velocity correlation functions of the NN atoms,Kx=ksxl

−xl−1−aAd2l andKv=ksẋl − ẋl−1d2l, wherek¯l stands for the
spatial average along the chain as well as the temporal aver-
age over the time intervalDt=2000p. For a spatially homo-

geneous state we should haveKx<Kx0=T/g and Kv<Kv0
=2T, whenever for an inhomogeneoussTJd state much
higher values are expected. Indeed, the dependencies pre-
sented in Fig. 3 clearly demonstrate the destruction of the
homogeneous state in the TJ regime. However, the TJ state is
a more subtle effect of clustering than the hysteretic behavior
of the Bsfd dependence. For example, for the parameters
used in Fig. 1, the TJ state disappears at low dampingsh*

=0d as well as at very high values ofh* se.g.,h* =0.393d.
As was shown in Refs.f7,8,13g, the normalized mobility

of the steady state with a coexistence of two phases, the TJ
phase consisting of locked atoms and the running domain
sRDd, is equal to B=burs1−ud / s1−urdu, where b=vr /v f

<1, u=N/M , ur is the local concentration in the RD andvr
is the average atomic velocity in the RDssee Fig. 2d. In the
case of a single TJ in the sea of running atoms, TJ grows

FIG. 2. Atomic coordinates as functions of time in the traffic-
jam regime forf =0.095,h* <0.0393,g=1/p , g=1, h=0.01, and
T=1.

FIG. 3. sColor onlined Dependence of the normalized correlation
of coordinatesKx/Kx0 sblack diamondsd and velocitiesKv /Kv0 sred
trianglesd on the driving forcef for h* <0.0393,g=1/p , g=1, h
=0.01, andT=1 for an increasing forcessolid curves and symbolsd
and a decreasing forcesdotted curves and open symbolsd.
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from its left-hand side with the rateR+=vr /ar, where ar
=as/ur, while from its right-hand side TJ shortens with a rate
R− due to “evaporation” of the right-most atom of TJ into
RD. At a low temperature and driving force, when«sfd
<«s− fas/2@T, the evaporation of the right-most atom of TJ
is an activated process and its rate isR−sfd~ expf−«sfd /Tg.
The TJ may exist only ifR−ømaxR+. This leads to a con-
dition on the temperature, i.e.,T must be lower than some
critical value. In the TJ steady state the growing and evapo-
rating rates must be equal to each other,R+=R−. This gives
ur =mhasR−sfd / fb. The functionursfd has a minimum atf
=2T/as, and the same must be true for theBsfd dependence:
the normalized mobility first decreases and then increases
with f. This is in agreement with the simulation results of
Fig. 1. The inequalityursfd,u defines the range of model
parameters and forces, where the TJ steady state could be
stable, i.e., the dampingh should be lower than some critical
valueh8,0.5.

This simple approach allows us to explain the simulation
results. The TJ state may appear only in the underdamped
system when the substrate dampingh is low enough and an
atom exhibits bistability, i.e., when both states, the locked
state and the running state, coexistsand are dynamically
stabled at the same drivingf. Then the locked-to-running
transition should always pass through the TJ state, and the
only question is about the stability of this TJ state. In the
elastic FK model at a small dampingh the critical size of the
TJ is very large. When an atom joins the TJ on its left-hand
side, it excites a kinkslocal compressiond in the TJ. It then
runs to the right-hand side of the TJ and stimulates the
evaporation of the right-most atom of the TJf8g. In the in-
elastic model this effect is absent. The kink motion is

damped due to intrinsic dampinghl; therefore the TJ regime
is much more stable.

Thus we have shown that the dynamics of the soft model
with inelastic interaction drastically differs from the classical
selasticd one. First, the system exhibits hysteresis even at
high temperatures. The reason why the 1D model exhibits
hysteresis is that the soft model is effectively infinite dimen-
sional. The particles have an infinite number of internal de-
grees of freedom treated in a mean-field fashion. Second, the
soft model allows the coexistence of two phasessthe TJ re-
gimed for a much wider range of model parameters. Both
effects are due to the clustering of atoms in the soft model.
The mechanism of clustering is the same as described by
Cecconiet al. f3g, but our model is essentially different from
the latter. There is no artificial freezing in our model and, as
a result, the correlated motion emerges solely due to the
mutual damping of the NN atoms.

In the present work we considered the 1D model with a
repulsive interaction, when the classicalselasticd model
should not exhibit phase transitions. In a 2D or 3D system,
especially if there is also an attractive branch of the inter-
atomic interaction, the changes due to inelasticity should be
even more dramatic. Of course, the damping mechanism
cannot change the phase diagram of the system, but it cer-
tainly will change the kinetics of phase transitions as well as
possible metastable states in which the system may be cap-
tured.
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